

Welcome to 4820/5820

course goals: techniques for designing algorithms

- greedy

- dynamic programming

- etc

some problems hard

- NP-completeness

- computability

prelim I

use of hardness crypto

alg for hard problems

4820/5820 Logistics

Prerequisites 2110 or 2112 & 3110 or A- in other two
2800 data structures, coding in Java or Python
proofs & probability

Section plans mandatory, practice problems & quiz (on previous week)

Homework schedule Friday → Friday

Collaboration great, but write solution on your own

More 4820/5820 Logistics

Poll everywhere

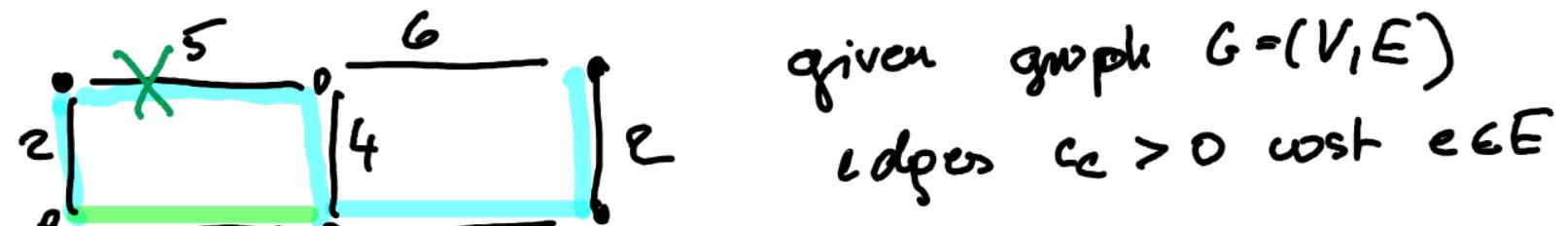
Exams: prelim I Thursday, Feb 20 12
prelim II, Tuesday March 24
final tbd

Office hours starting Friday

All info at our Web page: <https://www.cs.cornell.edu/courses/cs4820/2026sp/>

Topic 1: Greedy algorithms

- Problem today: Connected graph of minimum cost



- Example

total cost: 16

Optimal: $2 + 3 + 4 + 3 + 2 = 14$

problem: find minimum cost subgraph

Claim: optimal solution is a tree, i.e. no cycle

Minimum cost spanning tree (MST)

- Basic properties : solution is a tree

proof: contradiction

suppose contains a cycle

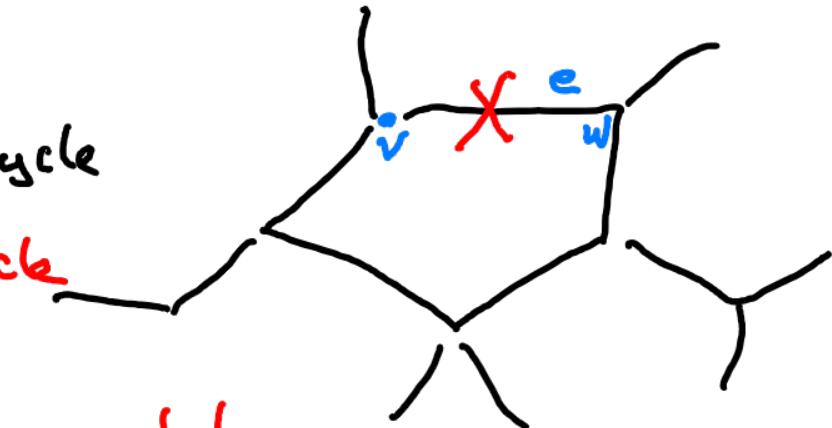
delete any edge from cycle

1. cheaper

2. graph remains connected

as two ends of e connected
by rest of cycle

$$e = (v, w)$$



Greedy algorithms for MST

greedy = myopic choices
& no revision

1. cheapest first

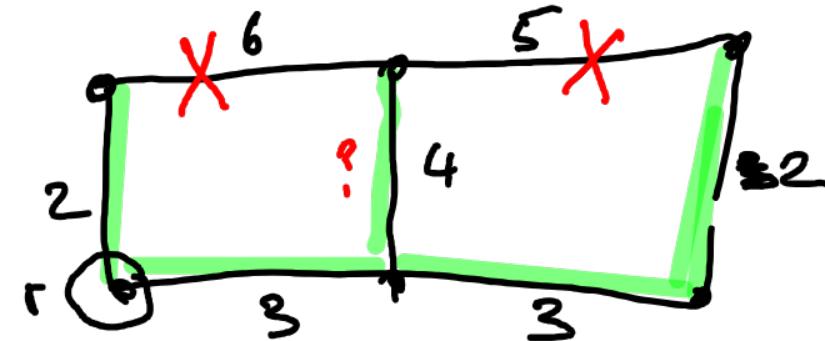
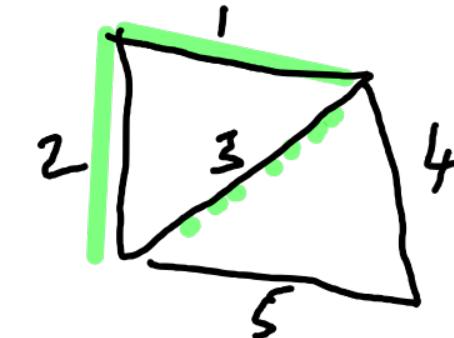
prove today
order by increasing cost
add edges in this order
unless they form a cycle

Kruskal

2. select a root

add edge connects to r
a new node the cheapest
way

3. order edges by decreasing
cost & remove them unless
removal disconnects graph



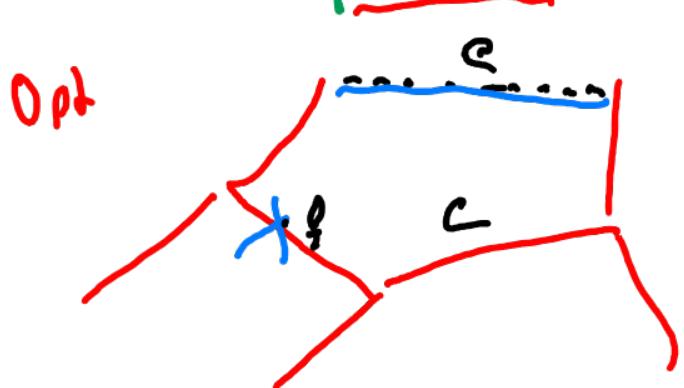
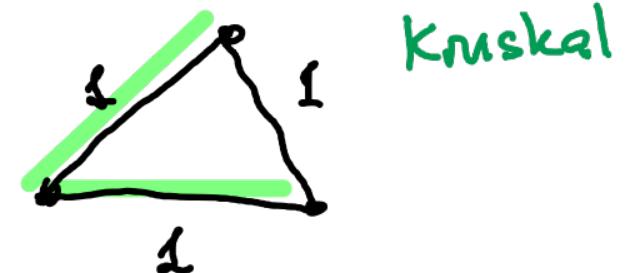
Proving correctness Kruskal

Proof technique: exchange argument:

suppose not true: Optimum not same as Kruskal

take optimal solution that agrees
with Kruskal with many edges as

* possible



Kruskal

consider first edge e

Kruskal took e is not in Opt
- adding e closes cycle C

Observe: C contains an edge $f \in C$
that was not included before e
In Kruskal's solution f is first time
 $\Rightarrow c_f \geq c_e *$

the two solutions
differ.

consider Opt-tree + e - f (swap e for f

- result: new tree
- no more expensive * \Rightarrow another Opt
- has more shared edges
contradicting *

Need also running time!